Definition: If \(f(x) \) becomes closer and closer to a single number \(L \) as \(x \) gets closer and closer to \(c \) from either side, then
\[
\lim_{x \to c} f(x) = L,
\]
which is read as “the limit of \(f(x) \) as \(x \) approaches \(c \) is \(L \).”

Examples:

(a) \(\lim_{x \to -1} 3x^2 + 5 = 3 \times (-1)^2 + 5 = 8 \).

(b) \(\lim_{x \to 2} \sqrt{x^2 + 1} = \sqrt{2^2 + 1} = 5 \)

(c) \(\lim_{x \to 0} \frac{1}{x^2 + 1} = \frac{1}{0^2 + 1} = 1 \).

(d) Suppose that
\[
f(x) = \begin{cases}
|x| & x \neq 0 \\
1 & x = 0
\end{cases}
\]
Then
\[
\lim_{x \to 0} f(x) = 0.
\]

Note:
\[
\lim_{x \to c} f(x)
\]
relies on the values of \(f(x) \) at \(x \) near \(c \), but may not have any connection to the value of \(f(x) \) at \(x = c \).

Replacement Theorem: If \(f(x) \) and \(g(x) \) are equal at all points except for at \(x = c \). Then,
\[
\lim_{x \to c} f(x) = \lim_{x \to c} g(x)
\]

Example:
\[
\frac{\sqrt{x + 1} - 1}{x} = \frac{\sqrt{x + 1} - 1}{x} \times \frac{\sqrt{x + 1} + 1}{\sqrt{x + 1} + 1} = \frac{x + 1 - 1}{x(\sqrt{x + 1} + 1)} = \frac{1}{\sqrt{x + 1} + 1}
\]
as long as \(x \neq 0 \) (why?). Therefore,
\[
\lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x} = \lim_{x \to 0} \frac{1}{\sqrt{x + 1} + 1} = \frac{\lim_{x \to 0} 1}{\lim_{x \to 0} (\sqrt{x + 1} + 1)} = \frac{1}{2}
\]

Extra Problems: Find the following limits

(a) \(\lim_{x \to 0} \frac{x^4 + 3x^3 - 5x^2}{x} \),

(b) \(\lim_{x \to 1} \frac{x^2 - 1}{x - 1} \)

(c) \(\lim_{x \to 1} \frac{x - 1}{x^2 - 1} \)

(d) \(\lim_{x \to 1} \frac{x - 1}{5x - 5} \)