Problem 5
(a) [6 points] The surface area of a cube is increasing at a rate of 4 in²/sec. How fast is the volume changing when the length of each edge is 2 inches long?

\[A = 6a^2 \Rightarrow \frac{dA}{dt} = 12a \frac{da}{dt} \]

and we know that \(\frac{dA}{dt} = 4 \)

\[V = a^3 \Rightarrow \frac{dV}{dt} = 3a^2 \frac{da}{dt} \]

Since \(12a \frac{da}{dt} = 4 \)

\[\Rightarrow a = 2, \quad \frac{da}{dt} = \frac{4}{12 \cdot 2} = \frac{1}{6} \text{ in/sec} \]

\[\Rightarrow \frac{dV}{dt} = 3 \cdot 4 \cdot \frac{1}{6} = 2 \text{ in}^3/\text{sec} \]

(b) [6 points] Find the equation for the line that pass through the point (0, 0) and is parallel to the tangent of \(f(x) = x^2 \) at \(x = 1/2 \).

\[f'(x) = 2x \quad a \cdot x = \frac{1}{2}, \quad f'(\frac{1}{2}) = 2 \cdot \frac{1}{2} = 1 \]

The line that passes through (0, 0) and has slope \(m = 1 \) is

\[y - 0 = 1 (x - 0) \Rightarrow y = x \]
Extra Credit Problems-- Each of the following problems is optional and each is worth 10 points.

1.) Consider the function f whose derivative f' is given in the graph below. I repeat, the graph below is that of f', NOT f. However, answer the following questions about f, NOT f'.
 a.) List the x-value(s) for which f has a relative maximum.
 \[-7, \quad 1\]
 b.) List the x-value(s) for which f has a relative minimum.
 \[-3, \quad 7.5\]
 c.) List the x-value(s) for which f has an inflection point.
 \[-5, \quad -1, \quad 3\]

2.) A square is inscribed in the given right triangle. Find the area of the square.

\[
A = \sqrt{13^2 - 12^2} = 5
\]

Using triangles ABC and ADE, we have:

\[
\frac{x}{12-x} = \frac{5}{12} \quad (= \tan \theta)
\]

\[
\Rightarrow 12x = 60 - 5x \quad \Rightarrow x = \frac{60}{17}
\]

\[
\Rightarrow \text{Area} = \left(\frac{60}{17}\right)^2
\]